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Abstract The phosphatidylinositol 3-kinase α (PI3Kα)
was genetically validated as a promising therapeutic target
for developing novel anticancer drugs. In order to explore
the structure-activity correlation of benzothiazole series as
inhibitors of PI3Kα, comparative molecular field analysis
(CoMFA), comparative molecular similarity indices analy-
sis (CoMSIA) were performed on 61 promising molecules
to build 3D-QSAR models based on both the ligand- and
receptor-based methods. The best CoMFA and CoMSIA
models had a cross-validated coefficient rcv

2 of 0.618 and
0.621, predicted correlation coefficient rpred

2 of 0.812 and
0.83, respectively, proving their high correlative and
predictive abilities on both the training and test sets. In
addition, docking analysis and molecular dynamics simu-
lation (MD) were also applied to elucidate the probable
binding modes of these inhibitors at the ATP binding
pocket. Based on the contour maps and MD results, some
key structural factors responsible for the activity of this
series of compounds were revealed as follows: (1) Ring-A
has a strong preference for bulky hydrophobic or aromatic

groups; (2) Electron-withdrawing groups at the para
position of ring-B and hydrophilic substituents in ring-B
region may benefit the potency; (3) A polar substituent like
-NHSO2- between ring-A and ring-B can enhance the
activity of the drug by providing hydrogen bonding
interaction with the protein target. The satisfactory results
obtained from this work strongly suggest that the developed
3D-QSAR models and the obtained PI3Kα inhibitor
binding structures are reasonable for the prediction of the
activity of new inhibitors and be helpful in future PI3Kα
inhibitor design.
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Introduction

Phosphatidylinositol 3-kinases (PI3Ks) constitute a class of
enzymes that phosphorylate the 3-hydroxyl position of
phosphatidylinositol 4,5-bisphosphate, and the resulting phos-
phatidylinositol 3,4,5-trisphosphate (PIP3) as second messen-
gers, can regulate a remarkably diverse array of physiological
processes, including glucose homeostasis, cell growth, differ-
entiation, and motility [1, 2]. In opposition to PI3K, the
phosphatase and tensin homologue protein (PTEN) dephos-
phorylates the PIP3, leading to subsequent inactivation of the
downstream signaling molecules and a down-regulation of
the pathway. Loss of PTEN protein or function has been
found in a large number of human cancers [3]. Therefore, one
approach for an antitumor drug is to develop small-molecule
inhibitor of PI3K to lower the PIP3 level.

The PI3Ks known to date are divided into three classes
of I—III based on their sequences and substrate specific-
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ities. Class I PI3Ks are further subclassified into class IA
enzymes (PI3Kα, β and δ), which have a p85 regulatory
subunit and three different catalytic subunits (p110α, β,
and δ), and class IB enzyme (PI3Kγ) [4]. PI3Kα, which is
activated by the receptor tyrosine kinases, undergoes a gene
amplification and might also be involved in the control of
endothelial cell migration of tumor cells [5–7]. Thus as a
potential target for cancer therapy, PI3Kα has sparked great
interests in the field of drug discovery.

To discover molecules with anticancer potential, several
non-selective PI3K inhibitors have been developed, includ-
ing wortmannin and LY294002 [8–10]. However, the high
toxicity associated with these inhibitors have frustrated
them greatly for further clinical applications. Therefore, a
number of ATP-competitive PI3Kα inhibitors with im-
proved selectivity have been identified. A natural product
resveratrol found in fruits showed moderate inhibition of
PI3Kα/β (IC50=25 μM) [11]. Its inhibition of COX
proteins initially established its chemopreventative/ chemo-
therapeutic potential and this potential may now also
include its capability to decrease the PI3K-controlled
glucose metabolism and the activatory phosphorylation of
the anti-apoptotic kinase PKB (protein kinase B)/Akt.
Another natural product liphagal was recently found to be
a PI3Kα inhibitor (IC50 ~100 nM) with a 10-fold selectivity
over PI3Kγ [12]. In addition, liphagal derivatives, includ-
ing desformylliphagal, desmethyliphagal, and a liphagal
spiro analog all have been reportedly exhibiting higher
PI3Kα inhibitory values (IC50=250~600 nM) [13]. A
thieno[3,2-d]pyrimidine derivative was discovered as a
highly selective PI3Kα inhibitor (IC50=2.0 nM) with great
potency of inhibiting the tumor cell proliferation in vitro
[14]. However, it is not effective in vivo because of the
poor pharmacokinetic profile of a short half-life<10 min.
Subsequently, imidazopyridine PIK-75 has been identified
as a novel potent PI3Kα inhibitor with very strong potency
(IC50=0.30 nM) [15]. It was not only highly selective over
other PI3K isoforms (130~2800-fold increase), but also
exhibited anti-proliferative activity at submicromolar con-
centrations in A373, HeLa, A549, MCF7 and MCF7 ADR-
res cell lines as well as the potency effectively against HeLa
human cervical tumor xenografts.

Experimental assessment of the activity of PI3Kα
inhibitors remains a labor-intensive and time-consuming
operation. Therefore, more efficient and economical alter-
native methods such as the in silico molecular modeling
approaches should be incorporated for the purpose of
predicting and prioritizing chemicals for subsequent in
vitro and in vivo screening. The homology models of PI3K
isoforms, i.e., p110α/β/γ and δ, showed that the overall
folding pattern (β-sheets, helices, and main loops) is well
conserved among the different isoforms [16]. In each
isoform, the active site consists of a deep cavity bordered

by conserved lipophilic residues, notably the MET804,
TRP812, ILE831, ILE879, TYR867, VAL882, and
MET953 (using the p110γ numbering). In addition,
molecular docking and molecular dynamics (MD) simula-
tion have been used to investigate the isoform-specific
selectivity between PI3Kα and PI3Kγ [17]. The results
indicate that the residues TRP780 and ASN782 in PI3Kα
and the corresponding residues TRP812 and GLU814 in
PI3Kγ in the solvent-accessible region confer the PI3Kα
and PI3Kγ isoform specificity. A recent pharmacophore study
of PI3Kα inhibitors also showed a five-point pharmacophore
composed of three hydrogen bond (H-bond) acceptors, one
hydrophobic group, and one aromatic ring as pharmacophore
features [18].

In this work a total of 61 benzothiazole derivatives as
potent PI3Kα inhibitors [19] were collected to build 3D-
QSAR models using comparative molecular field analysis
(CoMFA) and comparative molecular similarity indices
analysis (CoMSIA) methods [20, 21]. Furthermore, molec-
ular docking and MD simulation were also performed to
further understand the structure properties and the probable
binding modes of these inhibitors at the ATP binding
pocket. All these methods applied on the inhibitors could
not only help in understanding the ligand-receptor inter-
actions but also provide useful and rational suggestions for
further design of new drug candidates of PI3Kα for cancer
therapy.

Methods and materials

Data sets and biological activity

The dataset used in the present work includes a series of 61
benzothiazole derivatives as novel PI3Kα inhibitors [19],
after discarding those compounds with unspecified inhibitory
activity. Their binding affinity of Ki values (in nM) to
PI3Kα, was converted into pKi (−log Ki) values and used as
a dependent variable in further 3D-QSAR analyses. The
whole data set was divided into two subsets: a training set of
49 compounds for generating the QSAR models and a test
set of 12 compounds for validating the quality of the models.
Selection of the training set and the test set was accom-
plished by maintaining the similar distribution of structural
diversity and the range of biological activities. Table 1
depicts some representative structures and binding affinities
of the molecules, and all structures, pKi values and training/
test set distribution of the whole dataset are provided in the
supporting information of Tables S1 and S2.

All molecular modeling calculations were performed
with Sybyl 6.9 package (Tripos Associates, St. Louis, MO),
where for each molecule the Gasteiger-Hückel charges were
added and energy minimization was performed using
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Tripos force field [22] with the Powell conjugate gradient
minimization algorithm. The minimization would not stop
until the energy gradient convergence criterion of
0.05 kcal mol-1 Å-1 was reached.

Molecular docking

An accurate 3D structure of the receptor is important for
molecular docking and rational development of novel

potential inhibitors. However, the X-ray structure of the
PI3Kα complexed with benzothiazole based inhibitors has
not yet been reported. We thus retrieved the X-ray crystal
structures of apo PI3Kα (PDB code: 2RD0) [23] and the
PI3Kα H1047R mutant/wortmannin complex (PDB code:
3HHM) [24] from the RCSB Protein Data Bank, thereafter
the structural alignment we performed between these two
proteins using the DaliLite [25] program showed that these
proteins are highly consistent with each other. Therefore,

Table 1 Representative skeletons and molecular structures of benzothiazole derivatives and their binding affinity pKi values

Skeleton type I 

Compound R1 Ki(nM) pKi(nM) 

1 -SMe 53 7.2757  

2 -SPh 40 7.3979  

3 -SBn 47 7.3279  

4 -OPh 102 6.9914  

5 -OBn 105 6.9788  

6b 7412.50016hPHN-

7 -NHBn 85 7.0706  

8 -CH2Ph 605 6.2182  

9 -CH2CH2Ph 1010 5.9957  

10a 46 7.3372 

13 31 7.5086 

16a 144 6.8416 

19a 61 7.2147 

20 47 7.3279 
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Table 1 (continued)

21 18 7.7447 

25a 129 6.8928 

26 114 6.9431 

28 32 7.4949 

29 148 6.8297 

30 1550 5.8097 

31 333 6.4776 

32 24 7.6198 

33 117 6.9318 

36 41 7.3872 

37 65 7.1871 

41a 38 7.4202 

42 3130 5.5045 

Compound R1 Ki(nM) pKi(nM)

Skeleton type I 
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Table 1 (continued)

HN

S

O
O

N

S

NHAc

R2

R3

Skeleton type II
Compound R2 R3 Ki(nM) pKi(nM) 

43 4-OMe 13 7.8861  

44 4-OMe 1.6 8.7959  

45a 4-OMe 9 8.0458  

46 4-OMe 48 7.3188  

47a 4-OMe 1.4 8.8539  

48 4-OMe 1.2 8.9208  

49 4-OMe 0.7 9.1549  

51 2-CF3 0.8 9.0969  
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the 3HHM structure and the 2RD0 protein were
superposed, the ligand wortmannin of 3HHM were then
merged into the corresponding site of the catalytic
subunit P110α of 2RD0 and used as the ligand to
generate the grid file for the docking study. The side
chains with missing coordinates in the crystal structure
were reconstructed using the fragment library of the
Biopolymer module [26]. The modified P110α was
subsequently prepared using the protein preparation
wizard in the Sybyl software suite.

To explore the interaction and to illustrate the accurate
binding model for the active site of PI3Kα with its
ligands, molecular docking was performed by using the
Surflex module of Sybyl package. All parameters were
set with default values in the whole process. Before
docking, all water molecules were removed from the X-
ray structure. Subsequently, the relative ligands were
extracted with polar hydrogen atoms added. The proto-
mol was produced using ligand-based method: ligand
location in the same coordinate space in the receptor.

During docking process, two parameters, i.e., protomol_bloat
and protomol_threshold, were applied to determine how
far the site should extend from a potential ligand and
how deep the atomic probes used to define the protomol
could penetrate into the protein, respectively. Finally
each conformer of all 61 inhibitors was docked into the
binding site ten times with the D_score [27], G_score
[28], Chemscore [29] and PMF_score [30] values further
used to evaluate the docking analysis. The top ranked
conformations for each molecule were extracted, then
aligned together and subsequently utilized in CoMFA and
CoMSIA modeling.

Conformational sampling and alignment

Molecular alignment of compounds is a crucial step in the
development of CoMFA and CoMSIA models [31]. In this
study, two alignment rules were employed to derive the best
possible 3D-QSAR statistical model, with compound 54 with
the most potent activity in the dataset used as template. One

Table 1 (continued)

54 2-Cl  0.9 9.0458  

57 3-Bu 0.9 9.0458  

59 2-F 0.9 9.0458  

Compound R2 R3 pKi(nM)

HN

S

O
O

N

S

NHAc

R2

R3

Skeleton type II
Ki(nM)

aMolecules belong to the test set.
bMolecule is the outlier
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is ligand-based alignment, where molecule 54 was used
to fit all remaining compounds by using the database align
function in Sybyl. The common substructure of the
compounds is shown in bold in Fig. 1a and the aligned
compounds are depicted in Fig. 1b. The other approach is
receptor-based alignment, whose results are shown in
Fig. 1c.

3D-QSAR analysis

CoMFA and CoMSIA studies were performed based on
above molecular alignment rules to build predictive 3D-
QSAR models. To derive the three-dimensional descriptor
fields, a 3D cubic lattice with grid spacing of 2 Å in x, y
and z directions was generated automatically to encompass
the aligned molecules. In CoMFA, a sp3 carbon atom was
used as a probe to generate the steric (Lennard-Jones
potential) field energies and a charge of +1 to generate the
electrostatic (Coulombic potential) field energies [32]. The
CoMFA fields generated automatically were scaled by the
CoMFA-STD [33] method with default energy cut-off
values of 30 kcal mol-1.

CoMSIA similarity index descriptors were derived using
the same lattice boxes as those used in CoMFA calcu-
lations. In addition to steric and electrostatic fields,
hydrophobic, H-bond donor and acceptor descriptors were

calculated using the standard settings that probe with
charge +1, radius 1 Å and hydrophobicity +1, H-bond
donating +1, H-bond accepting +1, attenuation factor α of
0.3 and grid spacing 2 Å. CoMSIA similarity indices (AF)
for a molecule j with atoms i at a grid point q are calculated
by Eq. 1 as follows:

Aq
F; kðjÞ ¼ �

X
wprobe;kwike

�ar2iq ð1Þ

In this equation, k represents the steric, electrostatic,
hydrophobic, or H-bond donor or acceptor descriptors.
ωprobe,k is the probe atom with radius 1.0 Å, charge +1,
hydrophobicity +1, H-bond donating +1, H-bond accept-
ing +1; ωik is the actual value of physicochemical property k
of atom i; α is the attenuation factor with the default value of
0.3 used. A Gaussian type distance dependence was used
between the grid point q and each atom i of the molecule.
This can avoid singularities at the atomic positions and the
dramatic changes of potential energy due to grids in the
proximity of the surface [34].

The CoMFA/CoMSIA fields combined with observed
biological activities (pKi) were included in a molecular
spreadsheet and partial least square (PLS) methods [35]
were applied to generate 3D-QSAR models. The cross-
validation analysis was performed using leave-one-out
(LOO) method. The cross-validated rcv

2 which was used

Fig. 1 Alignment of the compounds used in the training and test sets.
(a) Compound 54 used as a template for ligand-based alignment. The
common substructure is shown in bold. Ligand- and receptor-based

alignments of all the compounds are shown in panels (b) and (c),
respectively. Molecules are colored in white for common C, blue for
N, red for O, yellow for S, cyan for H atoms, respectively
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to generate the optimum number of components and lowest
standard error of prediction were taken. Then the optimum
number of components obtained from the cross-validation
analysis was used to calculate the conventional rncv

2. The
predictive ability of the 3D-QSAR model was determined
using the compounds which were not included in the
training set. The predictive correlation coefficient rpred

2,
based on the test set molecules, was calculated using the
Eq. 2:

rpred
2 ¼ ðSD� PRESSÞ=SD ð2Þ

where SD is the sum of the squared deviation between the
actual pIC50 values of the compounds in the test set and the
mean pIC50 value of the training set ones. PRESS is the
sum of squared deviation between predicted and actual
activities of the test set compounds.

Molecular dynamics simulations

The docked complex with compound 54 served as a
starting structure for MD simulations using Amber10 [36].
Chloridion ions were added to the system by random
replacement of water molecules until neutrality was
achieved. We select the standard AMBER99SB force field
for proteins [37], meanwhile ligand charges and parameters
were determined with the antechamber module of Amber
10 based on the AM1-BCC charge scheme [38] and the
general atom force field (GAFF) [39]. The complex was
solvated in a rectangular box of TIP3P water [40], keeping
a minimum distance of 12 Å between the solute and each
face of the box (99.07×80.13×71.66 Å3). The total number
of the atoms in the simulation system was 173,845 including
the complex and waters. The cutoff distance was kept to
8 Å to compute the nonbonded interactions. All simulations
were performed under periodic boundary conditions. To
remove possible bad contacts, 1500 steps of energy
minimization were performed (with 500 steps using the
steepest descent and the other ones with the conjugate
gradient algorithm). Constant volume dynamics with a
cutoff of 8 Å was chosen. The SHAKE algorithm [41]
was employed for all covalent bonds containing a
hydrogen atom and the time increment was set to 2 fs.

Firstly, the minimized systems were gradually heated to
300 K at a constant force of 2.0 kcal mol−1 Å−2. The second
step consisted of a 50 ps pressure-constant period to raise
the density while still keeping the complex atoms con-
strained. The third step was a 500 ps Langevin dynamics
calculation with a collision frequency of 1 ps−1, which was
performed with a 2 fs time step in the NPT ensemble at a
constant temperature of 300 K. Finally, the production
phase was run for 4 ns with a 2 fs time step. The calculation
of electrostatic forces utilized the particle-mesh-Ewald
method [42] with default values.

Results and discussion

CoMFA and CoMSIA statistical results

To obtain an effective 3D-QSAR model, a number of
statistical parameters, i.e., the cross-validated correlation
coefficient (rcv

2), non-cross-validated correlation coefficient
(rncv

2), standard error estimate (SEE) and F-statistic values
(F) should be analyzed. In view of the central role that the
structural alignment of compounds plays in the development
of successful 3D-QSAR models [31], all compounds of the
dataset were aligned according to two rules (both ligand- and
docking-based) to derive the CoMFA and CoMSIA models.
The optimal results obtained from both alignment rules using
the same training set are summarized in Table 2.

As seen from this table, all optimal CoMFA models are
constructed from steric and electrostatic descriptor fields, and
the CoMSIA ones are built by varying the electrostatic,
hydrophobic, and H-bond acceptor descriptor fields. In
addition, obviously both the ligand-based CoMFA and
CoMSIA models exhibited better statistical results than
corresponding receptor-based CoMFA and CoMSIA ones,
where the ligand-based modeling yielded rcv

2 =0.618, rncv
2=

0.897, rpred
2=0.812 for CoMFA, rcv

2 =0.621, rncv
2 =0.934,

rpred
2=0.833 values for CoMSIA models respectively, while

the receptor-based modeling gave rcv
2 =0.426, rncv

2=0.914,
rpred

2=0.475 for CoMFA, rcv
2 =0.54 and rncv

2=0.890,
rpred

2=0.859 for CoMSIA models, respectively.
Hence, our attention was mainly focused on the ligand-

based alignment model due to its more satisfactory
statistical data. The CoMFA model (see Table 2) has an F
value of 130.743 and an SEE value of 0.324. The CoMSIA
model has an F value of 155.171 and an SEE value of
0.263. The high rcv

2, rncv
2, and F values along with the low

SEE values suggest that the models are reasonable and
should have good internal predictive ability. The results
also reveal that the electrostatic and hydrophobic and H-
bond acceptor features play important roles in determining
the biological activity of these inhibitors. For the CoMFA
model the contributions from the steric and electrostatic
fields were found to be 62% and 38% respectively, while
for the CoMSIA one the electrostatic, hydrophobic and H-
bond acceptor fields contribute about 28%, 39% and 33%
contributions, respectively.

The external predictive abilities of these models were
determined by the test set composed of 12 compounds
independent from the training set ones. The predicted rpred

2

values from the CoMFA and CoMSIA models were found to
be 0.812 and 0.833, respectively (Table 2). The plots of
actual versus predicted activities for training and test set
molecules of the two models are depicted in Fig. 2, showing
that there is no systematic error in the methods, i.e., the
predicted activities are almost as accurate as the experimental
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data. In addition, as seen from this figure the data points are
rather uniformly distributed around the regression line,
indicating the reasonability of the obtained models.

3D-QSAR contour maps

One of the attractive features of 3D-QSAR modeling is the
visualization of the information content of the derived
models by the contour maps generated to rationalize the
regions in 3D space around the molecules where changes in
the fields were predicted to increase or decrease the activity
[43]. After consideration of both the internal and external

predictive powers, the best ligand-based CoMFA and
CoMSIA models are selected for each conformation to
construct the stdev*coeff contour maps to view the field
effects on the target features.

CoMFA contour maps

Figure 3 shows the contour maps derived from the CoMFA
PLS model. The most potent analogue, compound 54, was
embedded in the maps to demonstrate its affinity for the
steric and electrostatic regions of inhibitors. In the steric
field (Fig. 3b), the green (sterically favorable) and yellow

Fig. 2 Graphs of the predicted
pKi versus the actual pKi values
the optimal models. (a) Result
from CoMFA. (b) Result from
CoMSIA. The solid lines are the
regression lines for the fitted and
predicted bioactivities of the
dataset

Table 2 Summary of the best CoMFA and CoMSIA results

Parameters Ligand-based model Receptor-based model

CoMFA CoMSIA CoMFA CoMSIA

rcv
2 0.618 0.621 0.426 0.54

rncv
2 0.897 0.934 0.914 0.890

SEE 0.324 0.263 0.295 0.334

F 130.743 155.171 159.631 121.288

rpred
2 0.812 0.833 0.475 0.859

SEP 0.624 0.628 0.763 0.683

Nc 3 4 3 3

Field contribution

S 0.620 - 0.463 -

E 0.380 0.277 0.537 0.347

H - 0.392 - 0.328

D - - - -

A - 0.331 - 0.326

rcv
2 =Cross-validated correlation coefficient using leave-one-out method

rncv
2 =Non-cross-validated correlation coefficient; SEE=Standard error of estimate

F=Ratio of rncv
2 explained to unexplained=rncv

2 /(1−rncv2 )
rpred

2 =Predicted correlation coefficient for the test set of compounds

SEP=Standard error of prediction; Nc=Optimal number of principal components

S=Steric; E=Electrostatic; H=Hydrophobic; D=H-bond donor; A=H-bond acceptor
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(sterically unfavorable) contours represent 85% and 15%
level contributions, respectively. A small sterically favor-
able (green) contour is observed between ring-A and ring-
C. In addition, several small sterically unfavorable (yellow)
contours appear around ring-A and ring-B. This indicates
that molecules carrying bulkier substituents at ring-A are
more active than those compounds having small substituent
at ring-A or reaching yellow contours. Hence, an addition
of bulky groups at ring-A near the green contour might aid
in an improved potency of the inhibitors. For example, in
the high active molecules (44, 48, 49, 51, 54~61), all their
substituted ring-As fall into this green contour showing that
this may be a suitable site for bulky group. Another green
contour appears adjacent to ring-B (position-2), therefore,
bulky substituents at this site may improve the activity. For
example, substituents of 2-Me (48), 2-CN (47), 2-H (44) all
located at the large green regions, cause compound 48 to
exhibit stronger inhibitory activity than compounds 47 and
44 due to its bulkier substituent.

In the CoMFA electrostatic field (Fig. 3c), the blue
(electropositive charge favorable) and red (electronegative
charge favorable) contours represent 90% and 10% level
contributions, respectively. There is a blue contour pre-
sented in the side of the -NHSO2- (between ring-A and
ring-B), suggesting that positively charged groups may
significantly enhance the affinity between PI3Kα and its
inhibitors (Fig. 3c). This can be well illustrated by the
higher potency of compound 33 having -NHSO2- at this
region than compound 42 with -NHCO- at the same
position. A red contour close to the blue one indicates that
electronegative groups in this region (ring-B) are favored
for higher activity, which can be exemplified by com-

pounds 44, 47, 48 and 49~61 (having substituted pyridine)
that are more active than 46 (having substituted benzene).
Another red contour presented in the side of ring-B and
near ring-A indicates that electronegative groups at these
regions will enhance the activity. Therefore, the fact that
compounds 51~61 are more active than compounds 43, 44,
45, 47, 48~50 can be explained as the former molecules all
have an electronegative substituted benzene which reaches
the red contour area while the latter have not.

CoMSIA contour maps

Compared to standard CoMFA, the major advantage of
CoMSIA is a better ability to visualize and interpret the
obtained correlation in terms of the field contributions. The
CoMSIA electrostatic, hydrophobic and H-bond acceptor
field contours with compound 54 are presented in Fig. 4. In
the hydrophobic contour map (Fig. 4b), the yellow
(hydrophobic favorable) and white (hydrophobic unfavor-
able) contours represent 85% and 15% level contributions,
respectively. In the H-bond acceptor field (Fig. 4c), the
purple (H-bond acceptor favorable) and red (H-bond
acceptor unfavorable) contours represent 90% and 10%
level contributions, respectively.

In the case of the CoMSIA contour, the electrostatic field
contours are closer to the ligand (shown in Fig. 4a). Besides,
another red contour which does not appear on the CoMFA
contour map covers -NHCOCH3 (region A), indicates that
the electronegative groups at this region would increase the
inhibitory activity. The fact is that all derivatives involved
in the present study possess -NHCOCH3 substituents at
this site.

Fig. 3 CoMFA StDev*Coeff
contour plots. (a) Compound 54
is shown in sticks as a reference.
(b) Steric fields: green and
yellow contours indicate regions
where bulky groups
increase or decrease the activity.
(c) Electrostatic fields: Red
contours indicate regions where
negative charges increase
activity; blue contours
indicate regions where positive
charges increase activity
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In the hydrophobic contour map (Fig. 4b), two yellow
contours near the chlorobenzene substituent (ring-A)
indicate that a hydrophobic group at this site would be
favorable. It is consistent with the fact that compound 28
bearing a benzene substituent had higher potency than
compounds 29, 30 with a morpholine substituent and
compounds 25, 26, 27 possessing a pyridine substituent at
ring-A. Two white contours around -NHSO2- between ring-
A and ring-B indicate that a hydrophilic substituent at this
site would be favorable. A large white contour observed
appearing adjacent to pyridine ring (ring-B), especially
adjoined to the N atom, indicates that a hydrophilic
substituent at this site would increase the activity. For
example, compounds 43, 44, 47~61 (having pyridine ring),
45 (having pyrazine ring) exhibited higher potency than
compound 46 which has a benzene ring at this site.

In the H-bond acceptor contour map (Fig. 4c), a purple
cricoid polyhedron is observed revolving around -NHSO2-
between ring-A and ring-B, indicating that H-bond acceptor
substituents may increase the activity. However, a red
contour close to this position implies that H-bond acceptor
groups have a negative effect on the inhibitory activity.
This phenomenon can be explained by the fact that the -NH-
of -NHSO2- as H-bond donor and -SO2- as H-bond acceptor
would increase the activity of inhibitors. Additionally,
another medium sized red contour was observed around
-NHCOCH3 (region A) suggesting that H-bond acceptor
groups at this position are unfavorable for the inhibitory
activity. However, a purple contour close to this position

implies that H-bond acceptor groups have a positive
effect on the inhibitory activity. This is consistent with the fact
that the -NH- of -NHCOCH3 as H-bond donor and -CO- as
H-bond acceptor.

Docking analysis and comparison with 3D contour maps

Molecular docking for all 61 inhibitors was performed
to find the probable binding conformation of the ligands
in the active sites of PI3Kα, and to predict the binding
affinity of the molecules, as well as to complement the
3D-QSAR studies for the rational design of drugs [44].
To elucidate the interaction mechanism, compound 54,
one of the most potent inhibitors among the whole dataset,
was selected for detailed analysis. The ligand core is
anchored in the binding site via seven H-bonds with the
protein which are depicted in Fig. 5. The analysis shows
that N atom of pyridine ring forms two H-bonds with the
hydrogen atom of -NH of ASP933 (2.79 Å, 135.5°) and -OH
of TYR836 (2.85 Å, 102.6°), respectively, while the benzo-
thiazole ring forms a H-bond with SER854 (1.93 Å, 122.4°).
The hydrogen atom of -NHCO- (region-A) forms two
H-bonds with VAL851 (2.56 Å, 176°) and SER854
(1.82 Å, 149.6°), respectively. In addition, the -NHSO2- group
forms a H-bond with LYS776 (1.98 Å, 148°) and a H-bond
with ASP933 (2.04 Å, 116.0°).

In this docking result, the conserved lipophilic adenine
region of PI3Kα is made up of ILE848, ILE932, VAL850,
VAL851, MET922 and PHE930 residues (shown in

Fig. 4 CoMSIA StDev*Coeff
contour plots. (a) Electrostatic
contour map. Blue and red con-
tours refer to regions where
electron-donating and electron-
withdrawing groups are favored.
(b) Hydrophobic contour map.
White and yellow contours refer
to regions where hydrophilic
and hydrophobic substituents
are favored. (c) H-bond acceptor
contour map. The magenta and
red contours demonstrated fa-
vorable and unfavorable H-bond
acceptor groups. Compound 54
is shown in sticks as a reference
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Fig. 5b) and accommodates the flat benzothiazole ring and
pyridine ring of the compounds. Of note, the two
hydrophilic rings present here are a contradiction to the
hydrophobic environment, and besides the H-bonding
analysis demonstrates that there are three H-bonds formed
between these two rings and the side-chains of residues
ASP933, TYR836 and SER854, which are not observed in
the H-bond donor contour map of the CoMSIA model.
These issues will be discussed in Comparison of the results
of docking and MD simulation.

We proposed that a hydrophobic substituent in the
benzene ring (ring-A) would be beneficial for the inhibitory
activity because it would project into a hydrophobic groove
comprised of ILE932, PRO778 and MET772. This is
consistent with the smaller green (sterically favorable)
contour of CoMFA steric field contour map (Fig. 3b) and

the yellow (hydrophobic favorable) contour of CoMSIA
hydrophobic contour map (Fig. 4b).

The polar interaction of the -NHSO2- or other groups
with polar amino acids results in the flat aromatic scaffold
(ring-A) extending into the hydrophobic groove, which is
helpful for increasing the binding affinity. It is also
consistent with the CoMFA electrostatic field contour map
(Fig. 3c) and H-bond acceptor field contour map (Fig. 4c)
of the CoMSIA model.

The -NHCOCH3 group (region-A) which is linked with
ring-D, forms a H-bond with the side chain of VAL851
and SER854. Since SER854, ASN853 and TRP780 are
not located in the highly conserved adenine, sugar, or
phosphate regions but in the solvent-accessible region of
the ATP binding pocket [45], the solvent-accessible
region can be exploited to increase the binding affinity

Fig. 5 Docking results.
(a) Surface of the binding site
surrounding the compound 54.
(b) Docked conformation
derived for compound 54 in
complex to the active site of
p110α. The ligands are colored
in magenta and key amino acid
residues in white labels around
compound 54 within 4 Å.
H-bonds are shown in green
dashed lines
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and helps the amino acid residues lock the ligand in the
ATP binding pocket. This is consistent with the red
contour of the electrostatic field contour map (Fig. 4a)
and H-bond acceptor field contour map (Fig. 4c) of the
CoMSIA model.

The results indicate that the benzothiazole derivatives are
of an ideal length (about 14.7 Å) for forming tight H-bonds
with ASP933 at one end of the pocket and with SER854 at
the other end. In general, the results of the docking studies
and its comparison with 3D contour maps can complement
and validate each other, indicating that the 3D-QSAR
model which we developed is reasonable and can offer
constructive suggestions to the further rectification and
modification of inhibitors of PI3Kα.

Comparison of the results of docking and MD simulation

Although docking analysis can provide a good starting
point for further calculations with the purpose of predicting
the binding modes, the solvent effect on the ligands and
kinases and the potential ligand-induced conformational
changes are not fully taken into account. Therefore, MD
simulations were undertaken in the state close to natural
conditions with the aim of checking the stability of the
complex in aqueous solution.

The 10 ns simulations of the docked complex structure
of modified P110α with ligand 54 were performed to obtain
a dynamical picture of the conformational changes that
occur in aqueous solution, with the main purpose of
exploring the conformational alterations that take place in
the ligand 54 and the P110α. The root mean square
deviation (RMSD) of the receptors and the ligands is
shown in Fig. 6. The RMSD of the trajectory with respect
to their initial structure ranges from 0.9 to 4.1 Å. After 4 ns,
the RMSD of the complex reaches about 3.5 Å, and retains
this value throughout the simulation, which indicates that
the docked complexes can reach metastable conformation

after 4 ns of simulation. From the average structure of
ensemble for the last 500 ps (Fig. 7 a and b), we can see
that it mainly forms four H-bonds. The H-bond formed
between ligand and ASP933 (1.83 Å, 118°) also exists in
the docking result. The O atom of -NHSO2- of the ligand
forms a H-bond with LYS802 (2.97 Å, 114.7°), which is
similar to the docking result (forms a H-bond with
LYS776). Another oxygen atom of -NHSO2- forms a
H-bond with ASN920 (3.21 Å, 151.8°). In addition, the O
atom of -NHCOCH3 of the ligand forms a H-bond with
GLN859 (2.35 Å, 166.6°). During docking simulation,
seven H-bonds were formed between compound 54 and
P110α. However, after MD simulations, only four H-bonds
were preserved, and the amino acids involved in forming the
H-bonds also changed as described above.

As seen from Fig. 7b, in the solvent-accessible region,
the H-bonds between the -NH group of -NHCOCH3 and
SER854 in the initial simulation structure broke within a
very short time and the O atom forms a H-bond with
GLN859. This phenomenon could be interpreted as the
solvent affects the stability of the H-bond, meanwhile, it
demonstrates that H-bond acceptor and donor groups are all
quite essential at this position to the binding affinity
increase. And this also explains why there are two opposite
contour areas at the same position in H-bond acceptor
contour map of CoMSIA model (Fig. 4c).

In the docking result we found that there are two
hydrophilic rings present in the hydrophobic environment,
besides, there are three H-bonds formed between these two
rings and the sidechains of polar amino acid residues which
are not observed in the H-bond donor contour map of the
CoMSIA model. It is because the docking procedure ignores
both the flexibility of the protein and the effect of water
solvation. However, MD simulations treat both the ligand and
the protein in a flexible way, allowing for an induced fit of the
receptor-binding site around the ligand. Therefore, these two
hydrophilic rings extend out of the hydrophobic pocket
slightly and can not form H-bonds with residues. These are
consistent with the hydrophobic field and H-bond acceptor
field counter maps of CoMSIA model. So, the conformations
obtained after molecular dynamics are more reasonable than
the docked conformations.

In the hydrophobic groove which is comprised of
ILE932, PRO778 and MET772, the benzene substituents
of the ligand happen to flip to be closer to polar amino
acids such as ASN920 and SER774, which indicates that
both the hydrophobic effect and the electrostatic force keep
the structure more stable. Furthermore, the H-bonds
between the ligand and ASP933 and LYS802 provide
stability in addition to the H-bond with the ASN920. The
docking result and MD simulation both show that residue
ASP933 in PI3Kα is a key residue to confer the inhibitory
activity. It can be seen, that the residues in this binding

Fig. 6 Plot of the root-mean-square deviation (RMSD) of docked
complex versus the MD simulation time in the MD-simulated structures
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pocket were hydrophilic and some are important H-bond
acceptors or donors, which are consistent with the hydro-
phobic field, H-bond acceptor field and electrostatic field
counter maps of the CoMSIA model. The analysis
described above suggests that there are no significant
differences between the docked model of the complex and
the stable structure extracted from MD simulations, which
indicates that the docking model is rational and valid.

Conclusions

Understanding intermolecular interactions of benzothiazole
derivatives with PI3Kα was achieved by performing

molecular 3D-QSAR, docking, and molecular dynamics.
The QSAR models exhibit relatively high rcv

2, rpred
2 and

small SEE values, along with further testing, indicating that
the obtained models were valuable in predicting the
inhibitory activity of benzothiazole derivatives against the
protein target. Furthermore, the 3D contour maps
produced by the best CoMFA and CoMSIA models
along with the docking results offered useful informa-
tion to understand the structure-activity relationship and
identified the structural features influencing the inhibi-
tory activity. To validate the binding mode and elucidate
the effects of ligand binding on the receptor conforma-
tion, MD simulation is performed. A set of 3D contour
maps reveal that moderate bulky and hydrophobic

Fig. 7 MD results. (a) Surface
of the binding site surrounding
the compound 54. (b) Plot of the
MD-simulated structures of the
binding site with ligand 54.
H-bonds are shown in green
dashed lines, active site amino
acid residues are represented as
sticks, the inhibitor is shown as
stick and ball model
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substituents at ring-A region are favored, which fits
with the hydrophobic region that consists of hydropho-
bic residues in the active pocket. The moderate bulky,
electron-withdrawing group on the para position of ring-
B and hydrophilic substituents at ring-B region may
benefit the potency. Besides, the polar substituents
between ring-A and ring-B are preferential, indicating
that there is a counterpart "receptor" favorable region
for hydrophilic substituents, as well as a "receptor"
favorable region for H-bonding interactions at this
place. Similarly, moderate length and weak electroneg-
ative substituent at region-A might enhance the activity.
The good consistency between the 3D-QSAR, the
docking and MD modeling results implies the robust-
ness of the 3D-QSAR models. Therefore, these models
are useful in predicting the activity of a new PI3Kα
inhibitor and can offer guidelines for the further
modification of ligand design.
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